/**
* @file
* @brief Implements [Sub-set sum problem]
* (https://en.wikipedia.org/wiki/Subset_sum_problem) algorithm, which tells
* whether a subset with target sum exists or not.
*
* @details
* In this problem, we use dynamic programming to find if we can pull out a
* subset from an array whose sum is equal to a given target sum. The overall
* time complexity of the problem is O(n * targetSum) where n is the size of
* the array. For example, array = [1, -10, 2, 31, -6], targetSum = -14.
* Output: true => We can pick subset [-10, 2, -6] with sum as
* (-10) + 2 + (-6) = -14.
* @author [KillerAV](https://github.com/KillerAV)
*/
#include <cassert> /// for std::assert
#include <iostream> /// for IO operations
#include <unordered_map> /// for unordered map
#include <vector> /// for std::vector
/**
* @namespace dynamic_programming
* @brief Dynamic Programming algorithms
*/
namespace dynamic_programming {
/**
* @namespace subset_sum
* @brief Functions for [Sub-set sum problem]
* (https://en.wikipedia.org/wiki/Subset_sum_problem) algorithm
*/
namespace subset_sum {
/**
* Recursive function using dynamic programming to find if the required sum
* subset exists or not.
* @param arr input array
* @param targetSum the target sum of the subset
* @param dp the map storing the results
* @returns true/false based on if the target sum subset exists or not.
*/
bool subset_sum_recursion(const std::vector<int> &arr, int targetSum,
std::vector<std::unordered_map<int, bool>> *dp,
int index = 0) {
if (targetSum == 0) { // Found a valid subset with required sum.
return true;
}
if (index == arr.size()) { // End of array
return false;
}
if ((*dp)[index].count(targetSum)) { // Answer already present in map
return (*dp)[index][targetSum];
}
bool ans =
subset_sum_recursion(arr, targetSum - arr[index], dp, index + 1) ||
subset_sum_recursion(arr, targetSum, dp, index + 1);
(*dp)[index][targetSum] = ans; // Save ans in dp map.
return ans;
}
/**
* Function implementing subset sum algorithm using top-down approach
* @param arr input array
* @param targetSum the target sum of the subset
* @returns true/false based on if the target sum subset exists or not.
*/
bool subset_sum_problem(const std::vector<int> &arr, const int targetSum) {
size_t n = arr.size();
std::vector<std::unordered_map<int, bool>> dp(n);
return subset_sum_recursion(arr, targetSum, &dp);
}
} // namespace subset_sum
} // namespace dynamic_programming
/**
* @brief Test Function
* @return void
*/
static void test() {
// custom input vector
std::vector<std::vector<int>> custom_input_arr(3);
custom_input_arr[0] = std::vector<int>{1, -10, 2, 31, -6};
custom_input_arr[1] = std::vector<int>{2, 3, 4};
custom_input_arr[2] = std::vector<int>{0, 1, 0, 1, 0};
std::vector<int> custom_input_target_sum(3);
custom_input_target_sum[0] = -14;
custom_input_target_sum[1] = 10;
custom_input_target_sum[2] = 2;
// calculated output vector by pal_part Function
std::vector<int> calculated_output(3);
for (int i = 0; i < 3; i++) {
calculated_output[i] =
dynamic_programming::subset_sum::subset_sum_problem(
custom_input_arr[i], custom_input_target_sum[i]);
}
// expected output vector
std::vector<bool> expected_output{true, false, true};
// Testing implementation via assert function
// It will throw error if any of the expected test fails
// Else it will give nothing
for (int i = 0; i < 3; i++) {
assert(expected_output[i] == calculated_output[i]);
}
std::cout << "All tests passed successfully!\n";
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test(); // execute the test
return 0;
}