"""
Forward propagation explanation:
https://towardsdatascience.com/forward-propagation-in-neural-networks-simplified-math-and-code-version-bbcfef6f9250
"""
import math
import random
def sigmoid_function(value: float, deriv: bool = False) -> float:
"""Return the sigmoid function of a float.
>>> sigmoid_function(3.5)
0.9706877692486436
>>> sigmoid_function(3.5, True)
-8.75
"""
if deriv:
return value * (1 - value)
return 1 / (1 + math.exp(-value))
INITIAL_VALUE = 0.02
def forward_propagation(expected: int, number_propagations: int) -> float:
"""Return the value found after the forward propagation training.
>>> res = forward_propagation(32, 10000000)
>>> res > 31 and res < 33
True
>>> res = forward_propagation(32, 1000)
>>> res > 31 and res < 33
False
"""
weight = float(2 * (random.randint(1, 100)) - 1)
for _ in range(number_propagations):
layer_1 = sigmoid_function(INITIAL_VALUE * weight)
layer_1_error = (expected / 100) - layer_1
layer_1_delta = layer_1_error * sigmoid_function(layer_1, True)
weight += INITIAL_VALUE * layer_1_delta
return layer_1 * 100
if __name__ == "__main__":
import doctest
doctest.testmod()
expected = int(input("Expected value: "))
number_propagations = int(input("Number of propagations: "))
print(forward_propagation(expected, number_propagations))