const std = @import("std");
const expect = std.testing.expect;
const Allocator = std.mem.Allocator;
const Error = Allocator.Error;
const RED: bool = true;
const BLACK: bool = false;
fn Node(comptime T: type) type {
return struct {
value: T,
parent: ?*Node(T) = null,
left: ?*Node(T) = null,
right: ?*Node(T) = null,
color: bool,
};
}
fn Tree(comptime T: type) type {
return struct {
root: ?*Node(T) = null,
pub fn search(self: *Tree(T), value: T) ?*Node(T) {
var node = self.root;
while (node) |x| {
if (value < x.value) {
node = x.left;
} else if (value > x.value) {
node = x.right;
} else {
return x;
}
}
return null;
}
pub fn insert(self: *Tree(T), value: T, allocator: Allocator) !void {
self.root = try insertNode(self.root, value, allocator);
self.root.?.color = BLACK;
}
fn isRed(h: ?*Node(T)) bool {
if (h) |v| {
return v.color == RED;
}
return false;
}
fn flipColors(h: *Node(T)) void {
h.color = !h.color;
h.left.?.color = !h.left.?.color;
h.right.?.color = !h.right.?.color;
}
fn rotateLeft(h: *Node(T)) *Node(T) {
var x = h.right;
h.right = x.?.left;
x.?.left = h;
x.?.color = h.color;
h.color = RED;
return x.?;
}
fn rotateRight(h: *Node(T)) *Node(T) {
var x = h.left;
h.left = x.?.right;
x.?.right = h;
x.?.color = h.color;
h.color = RED;
return x.?;
}
fn insertNode(node: ?*Node(T), value: T, allocator: Allocator) Error!*Node(T) {
if (node != null) {
var h = node.?;
if (isRed(h.left) and isRed(h.right)) {
flipColors(h);
}
if (value == h.value) {
h.value = value;
} else if (value < h.value) {
h.left = try insertNode(h.left, value, allocator);
} else {
h.right = try insertNode(h.right, value, allocator);
}
if (isRed(h.right) and !isRed(h.left)) {
h = rotateLeft(h);
}
if (isRed(h.left) and isRed(h.left.?.left)) {
h = rotateRight(h);
}
return h;
} else {
var new_node = try allocator.create(Node(T));
new_node.value = value;
new_node.parent = null;
new_node.left = null;
new_node.right = null;
new_node.color = RED;
return new_node;
}
}
};
}
test "search empty tree" {
var tree = Tree(i32){};
var result = tree.search(3);
try expect(result == null);
}
test "search an existing element" {
var tree = Tree(i32){};
var arena_allocator = std.heap.ArenaAllocator.init(std.heap.page_allocator);
defer arena_allocator.deinit();
const allocator = arena_allocator.allocator();
try tree.insert(3, allocator);
var result = tree.search(3);
try expect(result.?.value == 3);
try expect(result.?.color == BLACK);
}
test "search non-existent element" {
var tree = Tree(i32){};
var arena_allocator = std.heap.ArenaAllocator.init(std.heap.page_allocator);
defer arena_allocator.deinit();
const allocator = arena_allocator.allocator();
try tree.insert(3, allocator);
var result = tree.search(4);
try expect(result == null);
}
test "search for an element with multiple nodes" {
var tree = Tree(i32){};
const values = [_]i32{ 15, 18, 17, 6, 7, 20, 3, 13, 2, 4, 9 };
var arena_allocator = std.heap.ArenaAllocator.init(std.heap.page_allocator);
defer arena_allocator.deinit();
const allocator = arena_allocator.allocator();
for (values) |v| {
try tree.insert(v, allocator);
}
var result = tree.search(4);
try expect(result.?.value == 4);
}