import itertools
import string
from collections.abc import Generator, Iterable
def chunker(seq: Iterable[str], size: int) -> Generator[tuple[str, ...], None, None]:
it = iter(seq)
while True:
chunk = tuple(itertools.islice(it, size))
if not chunk:
return
yield chunk
def prepare_input(dirty: str) -> str:
"""
Prepare the plaintext by up-casing it
and separating repeated letters with X's
"""
dirty = "".join([c.upper() for c in dirty if c in string.ascii_letters])
clean = ""
if len(dirty) < 2:
return dirty
for i in range(len(dirty) - 1):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(clean) & 1:
clean += "X"
return clean
def generate_table(key: str) -> list[str]:
# I and J are used interchangeably to allow
# us to use a 5x5 table (25 letters)
alphabet = "ABCDEFGHIKLMNOPQRSTUVWXYZ"
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
table = []
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(char)
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(char)
return table
def encode(plaintext: str, key: str) -> str:
table = generate_table(key)
plaintext = prepare_input(plaintext)
ciphertext = ""
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for char1, char2 in chunker(plaintext, 2):
row1, col1 = divmod(table.index(char1), 5)
row2, col2 = divmod(table.index(char2), 5)
if row1 == row2:
ciphertext += table[row1 * 5 + (col1 + 1) % 5]
ciphertext += table[row2 * 5 + (col2 + 1) % 5]
elif col1 == col2:
ciphertext += table[((row1 + 1) % 5) * 5 + col1]
ciphertext += table[((row2 + 1) % 5) * 5 + col2]
else: # rectangle
ciphertext += table[row1 * 5 + col2]
ciphertext += table[row2 * 5 + col1]
return ciphertext
def decode(ciphertext: str, key: str) -> str:
table = generate_table(key)
plaintext = ""
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for char1, char2 in chunker(ciphertext, 2):
row1, col1 = divmod(table.index(char1), 5)
row2, col2 = divmod(table.index(char2), 5)
if row1 == row2:
plaintext += table[row1 * 5 + (col1 - 1) % 5]
plaintext += table[row2 * 5 + (col2 - 1) % 5]
elif col1 == col2:
plaintext += table[((row1 - 1) % 5) * 5 + col1]
plaintext += table[((row2 - 1) % 5) * 5 + col2]
else: # rectangle
plaintext += table[row1 * 5 + col2]
plaintext += table[row2 * 5 + col1]
return plaintext
The Playfair cipher was invented in 1854 by Charles Wheatstone but was named after Lord Playfair who promoted the use of the cipher.
The Playfair cipher was the first practical digraph substitution cipher. In Playfair cipher unlike traditional cipher, we encrypt a pair of alphabets(digraphs) instead of a single alphabet. A 5 × 5
grid of alphabets was used as the key-square. Each of the 25 alphabets is unique and one letter of the alphabet (usually J) is omitted from the table. If the plaintext contains J, then it is replaced by I or vice-versa. The initial alphabets in the key square are the unique alphabets of the key in the order in which they appear followed by the remaining letters of the alphabet in order.
Suppose we take an example as:
Plain Text (PT): instruments, key: monarchy
Diagraph: "me"
Encrypted Text: cl
Encryption:
m -> c
e -> l
Diagraph: "st"
Encrypted Text: tl
Encryption:
s -> t
t -> l
Diagraph: "nt"
Encrypted Text: rq
Encryption:
n -> r
t -> q
The rules above are used for Encryption. Can be applied vice-versa for Decryption.
5 × 5
matrix from the key as [m o n a r]
[c h y b d]
[e f g i k]
[l p q s t]
[u v w x z]
'in' 'st' 'ru' 'me' 'nt' 'sx'
Plain Text: instrumentsx
key: monarchy
Encryption:
i -> g
n -> a
s -> t
t -> l
r -> m
u -> z
m -> c
e -> l
n -> r
t -> q
s -> x
x -> a
So we will get the encrypted text as gatlmzclrqxa.
5 × 5
matrix from the key as [m o n a r]
[c h y b d]
[e f g i k]
[l p q s t]
[u v w x z]
'ga' 'tl' 'mz' 'cl' 'rq' 'xa'
Plain Text: gatlmzclrqtx
key: monarchy
Decryption:
ga -> in
tl -> st
mz -> ru
cl -> me
rq -> nt
xa -> sx
So we will get the encrypted text as instrumentsx.