use std::collections::VecDeque;
use std::ops::{Add, AddAssign, Neg, Sub, SubAssign};
type Graph = Vec<Vec<usize>>;
pub struct FlowEdge<T> {
pub sink: usize,
pub capacity: T,
pub flow: T,
}
pub struct FlowResultEdge<T> {
pub source: usize,
pub sink: usize,
pub flow: T,
}
impl<T: Clone + Copy + Add + AddAssign + Sub<Output = T> + SubAssign + Ord + Neg + Default>
FlowEdge<T>
{
pub fn new(sink: usize, capacity: T) -> Self {
FlowEdge {
sink,
capacity,
flow: T::default(),
}
}
}
pub struct DinicMaxFlow<T> {
level: Vec<usize>,
pub last_edge: Vec<usize>,
network_solved: bool,
pub source: usize,
pub sink: usize,
pub num_edges: usize,
pub num_vertices: usize,
pub adj: Graph,
pub edges: Vec<FlowEdge<T>>,
}
impl<T: Clone + Copy + Add + AddAssign + Sub<Output = T> + SubAssign + Neg + Ord + Default>
DinicMaxFlow<T>
{
pub fn new(source: usize, sink: usize, num_vertices: usize) -> Self {
DinicMaxFlow {
level: vec![0; num_vertices + 1],
last_edge: vec![0; num_vertices + 1],
network_solved: false,
source,
sink,
num_edges: 0,
num_vertices,
adj: vec![vec![]; num_vertices + 1],
edges: vec![],
}
}
#[inline]
pub fn add_edge(&mut self, source: usize, sink: usize, capacity: T) {
self.edges.push(FlowEdge::new(sink, capacity));
self.edges.push(FlowEdge::new(source, T::default()));
self.adj[source].push(self.num_edges);
self.adj[sink].push(self.num_edges + 1);
self.num_edges += 2;
}
fn bfs(&mut self) -> bool {
let mut q: VecDeque<usize> = VecDeque::new();
q.push_back(self.source);
while !q.is_empty() {
let v = q.pop_front().unwrap();
for &e in self.adj[v].iter() {
if self.edges[e].capacity <= self.edges[e].flow {
continue;
}
let u = self.edges[e].sink;
if self.level[u] != 0 {
continue;
}
self.level[u] = self.level[v] + 1;
q.push_back(u);
}
}
self.level[self.sink] != 0
}
fn dfs(&mut self, v: usize, pushed: T) -> T {
if v == self.sink {
return pushed;
}
for e_pos in self.last_edge[v]..self.adj[v].len() {
let e = self.adj[v][e_pos];
let u = self.edges[e].sink;
if (self.level[v] + 1) != self.level[u] || self.edges[e].capacity <= self.edges[e].flow
{
continue;
}
let down_flow = self.dfs(
u,
std::cmp::min(pushed, self.edges[e].capacity - self.edges[e].flow),
);
if down_flow == T::default() {
continue;
}
self.last_edge[v] = e_pos;
self.edges[e].flow += down_flow;
self.edges[e ^ 1].flow -= down_flow;
return down_flow;
}
self.last_edge[v] = self.adj[v].len();
T::default()
}
pub fn find_maxflow(&mut self, infinite_flow: T) -> T {
self.network_solved = true;
let mut total_flow: T = T::default();
loop {
self.level.fill(0);
self.level[self.source] = 1;
if !self.bfs() {
break;
}
self.last_edge.fill(0);
let mut next_flow = self.dfs(self.source, infinite_flow);
while next_flow != T::default() {
total_flow += next_flow;
next_flow = self.dfs(self.source, infinite_flow);
}
}
total_flow
}
pub fn get_flow_edges(&mut self, infinite_flow: T) -> Vec<FlowResultEdge<T>> {
if !self.network_solved {
self.find_maxflow(infinite_flow);
}
let mut result = Vec::new();
for v in 1..self.adj.len() {
for &e_ind in self.adj[v].iter() {
let e = &self.edges[e_ind];
if e.flow > T::default() {
result.push(FlowResultEdge {
source: v,
sink: e.sink,
flow: e.flow,
});
}
}
}
result
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn small_graph() {
let mut flow: DinicMaxFlow<i32> = DinicMaxFlow::new(1, 6, 6);
flow.add_edge(1, 2, 16);
flow.add_edge(1, 4, 13);
flow.add_edge(2, 3, 12);
flow.add_edge(3, 4, 9);
flow.add_edge(3, 6, 20);
flow.add_edge(4, 2, 4);
flow.add_edge(4, 5, 14);
flow.add_edge(5, 3, 7);
flow.add_edge(5, 6, 4);
let max_flow = flow.find_maxflow(i32::MAX);
assert_eq!(max_flow, 23);
let mut sm_out = vec![0; 7];
let mut sm_in = vec![0; 7];
let flow_edges = flow.get_flow_edges(i32::MAX);
for e in flow_edges {
sm_out[e.source] += e.flow;
sm_in[e.sink] += e.flow;
}
for i in 2..=5 {
assert_eq!(sm_in[i], sm_out[i]);
}
assert_eq!(sm_in[1], 0);
assert_eq!(sm_out[1], max_flow);
assert_eq!(sm_in[6], max_flow);
assert_eq!(sm_out[6], 0);
}
}