The Algorithms logo
The Algorithms
AboutDonate

Binary Insertion Sort

n
S
a
t
r
r
s
A
and 4 more contributors
/**
 * Pure Implementation of Binary Search Algorithm
 *
 * Binary insertion sort is a sorting algorithm similar to insertion sort,
 * but instead of using linear search to find the position
 * where the element should be inserted, we use binary search.
 * Thus, we reduce the number of comparisons for inserting one element from O(N)
 * (Time complexity in Insertion Sort) to O(log N).
 *
 */

/**
 * Search the key element in the array from start position to end position.
 *
 * @param {Array} array Array of numbers.
 * @param {Number} key Value to be searched
 * @param {Number} start start index position of array
 * @param {Number} end end index position of array
 * @return {Number} Position of the key element
 */
function binarySearch (array, key, start, end) {
  if (start === end) {
    if (array[start] > key) {
      return start
    } else {
      return start + 1
    }
  }

  if (start > end) {
    return start
  }

  const mid = Math.floor((start + end) / 2)

  if (array[mid] < key) {
    return binarySearch(array, key, mid + 1, end)
  } else if (array[mid] > key) {
    return binarySearch(array, key, start, mid - 1)
  } else {
    return mid
  }
}

/**
 * Binary Insertion Sort
 *
 * @param {Array} list List to be sorted.
 * @return {Array} The sorted list.
 */
export function binaryInsertionSort (array) {
  const totalLength = array.length
  for (let i = 1; i < totalLength; i += 1) {
    const key = array[i]
    const indexPosition = binarySearch(array, key, 0, i - 1)
    array.splice(i, 1)
    array.splice(indexPosition, 0, key)
  }
  return array
}